منابع مشابه
A Tiled Order of Finite Global Dimension with No Neat Primitive Idempotent
Let R be a discrete valuation ring with a unique maximal ideal πR and a quotient field K, and let F = R/πR be the residue class field. Let n ≥ 2 be an integer and {λij | 1 ≤ i, j ≤ n} a set of n integers satisfying λii = 0, λik + λkj ≥ λij , λij + λji > 0 (if i = j) for all 1 ≤ i, j, k ≤ n. Then Λ = (πijR) is a basic semiperfect Noetherian R-subalgebra of the full n× n matrix algebra Mn(K). We ...
متن کاملOn exponent matrices of tiled orders
A ring Λ is called a tiled order if Λ is a prime Noetherian semi-prefect semi-distributive ring with non-zero Jacobson radical. Any tiled order can be constructed from a (non-necessarily commutative) discrete valuation ring and an exponent matrix. The latter means a square integer matrix A = (αps), whose diagonal entries are equal to zero, and for all possible indices i, j, k, the following ine...
متن کاملOn Monomial Algebras of Finite Global Dimension
Let G be an associative monomial k-algebra. If G is assumed to be finitely presented, then either G contains a free subalgebra on two monomials or else G has polynomial growth. If instead G is assumed to have finite global dimension, then either G contains a free subalgebra or else G has a finite presentation and polynomial growth. Also, a graded Hopf algebra with generators in degree one and r...
متن کاملRings with Finite Gorenstein Global Dimension
We find new classes of non noetherian rings which have the same homological behavior that Gorenstein rings.
متن کاملInterval orders and dimension
We show that for every interval order X , there exists an integer t so that if Y is any interval order with dimension at least t, then Y contains a subposet isomorphic to X .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1990
ISSN: 0002-9947
DOI: 10.2307/2001534